Which is 5logx - 6log(x-8) written as a single logarithm?

Accepted Solution

Answer:option a[tex]log\frac{x^{5} }{(x-8)^{6} }[/tex]Step-by-step explanation:Given in the question an expression 5logx - 6log(x-6)To solve this question we will apply two of the logarithm property1) power rule alogx = log[tex]x^{n}[/tex]log[tex]x^{5}[/tex] - log[tex](x-8)^{6}[/tex]2) substraction ruleThe log of a quotient is the difference of the logsloga (x/y) = loga x - loga y[tex]logx^{5}- log(x-8)^{6}[/tex]log[tex]\frac{x^{5} }{(x-8)^{6} }[/tex]